
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington 

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.  

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of 

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

Human Action Recognition in Surveillance Videos using 

Abductive Reasoning on Linear Temporal Logic

14.  ABSTRACT

16.  SECURITY CLASSIFICATION OF:

Real time motion tracking is a very important part of activity recognition from streaming videos. But  little research 

has been done in recognizing the top-level plans linking  the atomic activities evident in various surveillance 

footages. This paper proposes a novel approach for high-level action recognition in surveillance videos combining 

Linear Temporal Logic (LTL) and Abductive Reasoning. Although both LTL and Abductive reasoning have been 

used separately for plan recognition in various Artificial Intelligence (AI) systems and mobile robots, the 

1. REPORT DATE (DD-MM-YYYY)

4.  TITLE AND SUBTITLE

13.  SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department 

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for public release; distribution is unlimited.

UU

9.  SPONSORING/MONITORING AGENCY NAME(S) AND 

ADDRESS(ES)

6. AUTHORS

7.  PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office 

 P.O. Box 12211 

 Research Triangle Park, NC 27709-2211

15.  SUBJECT TERMS

Human action recognition, Object Tracking, Plan recognition, Linear Temporal Logic, and  Abductive Reasoning.

Saikat Basu, Malcolm Stagg, Robert DiBiano, Manohar Karki, Supratik 

Mukhopadhyay,  ,

Louisiana State University and A&M College

Office of Sponsored Programs

Louisiana State University and A&M College

Baton Rouge, LA 70803 -0000

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

Technical Report

17.  LIMITATION OF 

ABSTRACT

UU

15.  NUMBER 

OF PAGES

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

5c.  PROGRAM ELEMENT NUMBER

5b.  GRANT NUMBER

5a.  CONTRACT NUMBER

W911NF-10-1-0495

0G10BC

Form Approved OMB NO. 0704-0188

58840-CS-DRP.4

11.  SPONSOR/MONITOR'S REPORT 

NUMBER(S)

10.  SPONSOR/MONITOR'S ACRONYM(S)

    ARO

8.  PERFORMING ORGANIZATION REPORT 

NUMBER

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER

Supratik Mukhopadhyay

225-578-1496

3. DATES COVERED (From - To)

Standard Form 298 (Rev 8/98) 

Prescribed by ANSI  Std. Z39.18

-



Human Action Recognition in Surveillance Videos using Abductive Reasoning on Linear Temporal Logic

Report Title

ABSTRACT

Real time motion tracking is a very important part of activity recognition from streaming videos. But  little research 

has been done in recognizing the top-level plans linking  the atomic activities evident in various surveillance 

footages. This paper proposes a novel approach for high-level action recognition in surveillance videos combining 

Linear Temporal Logic (LTL) and Abductive Reasoning. Although both LTL and Abductive reasoning have been 

used separately for plan recognition in various Artificial Intelligence (AI) systems and mobile robots, the framework 

proposed in this paper combines the two by first mapping the surveillance videos to LTL formula and then using 

probabilistic and logical reasoning to identify complex events like burglary/escapade or deal with arbitrary events 

like occlusion or random stops.



 

 

 

 

                       Saikat Basu1, Malcolm Stagg, Robert DiBiano, Manohar Karki, and  Supratik Mukhopadhyay,   1 

                             Louisiana State University, Baton Rouge{1sbasu8@lsu.edu} 2 
 3 

 4 

 5 

 6 

 7 

Abstract—Real time motion tracking is a very important part of activity recognition from streaming videos. But  little research 8 

has been done in recognizing the top-level plans linking  the atomic activities evident in various surveillance footages. This paper 9 

proposes a novel approach for high-level action recognition in surveillance videos combining Linear Temporal Logic (LTL) and 10 

Abductive Reasoning. Although both LTL and Abductive reasoning have been used separately for plan recognition in various 11 

Artificial Intelligence (AI) systems and mobile robots, the framework proposed in this paper combines the two by first mapping 12 

the surveillance videos to LTL formula and then using probabilistic and logical reasoning to identify complex events like 13 

burglary/escapade or deal with arbitrary events like occlusion or random stops.  14 

 15 

Keywords— Human action recognition, Object Tracking, Plan recognition, Linear Temporal Logic, and Abductive Reasoning.  16 
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1. Introduction 17 

IDEO surveillance systems have become increasingly important for national security. Object tracking and action 18 

recognition are two important parameters for any such surveillance system. Once an object is tracked and its motion has 19 

been classified into a standard category by comparing it against a database of actions, the difficult part is to link these 20 

actions or group of actions spatio-temporally to discover events that are unusual or seek attention. In many cases, such linking is 21 

done by human operators who have to sit continually in front of these surveillance cameras and keep watching for unusual 22 

events. However, for hours and hours of video data, this becomes a Herculean task and hence calls for an automated system that 23 

could track the objects, classify the motion, and reason about the top level actions in these surveillance videos. Although many 24 

trackers (Zhou, 2006) and motion classifiers (Junejo, 2008) are available today, none of them have the ability to reason about the 25 

top level plans involving complex events like burglary or escapade. In this paper, we present a novel approach on reasoning 26 

about the top level plans combining Linear Temporal Logic and Abduction based reasoning.  27 

    The rest of the paper is organized as follows. The related work is discussed in Section 1.1 while section 2 contains a formal 28 

description of Linear Temporal Logic. Section 3 contains the basics of our approach to mapping the surveillance video frames to 29 

LTL. Section 4 discusses abductive reasoning and its use for performing probabilistic computations for reasoning about complex 30 

events in surveillance videos. Section 5 illustrates the proposed Bayesian Framework used for inference. The implementation 31 

details and results are illustrated in Section 6. Section 7 concludes the paper with discussions of the model and future work.    32 

 33 

1.1 Related work  34 

   A theory for reasoning about actions that is based on Dynamic Linear Time Temporal Logic (DLTL) is proposed in (Giordano 35 

et al., 2001). They propose an approach for reasoning about actions and change in a temporal logic by modeling the temporal 36 

projection problem and planning problem as a satisfiability problem in DLTL. Another work that is quite related to our work is 37 

that proposed in (Raghavan and Mooney, 2011) on abductive plan recognition using Bayesian Logic Programs (BLPs). 38 

However, their work is based on Bayesian logic programs whereas we use a different approach that is based on Linear Temporal 39 

Logic (LTL).  40 

     Logical reasoning was first used for activity recognition in (Kautz, 1987).  It provided a formal theory of plan recognition 41 

describing it as a logical inference process of circumscription. All actions and plans are uniformly referred to as goals, and a 42 

recognizer's knowledge is represented by a set of first-order statements called event hierarchy encoded in first-order logic, which 43 

defines abstraction, decomposition and functional relationships between types of events. However, our work is based on the use 44 

of LTL in portraying the temporal relations between the actions in event space. A method for robbery detection was proposed in 45 

(Chuang, 2007) that primarily focuses on baggage detection and hence might raise false alarms even for a not so unusual event 46 

V



 

 

like a normal visit to a store or bank. Their approach lacks the ability to chain multiple activities that is inherent in a composite 47 

event like robbery.     48 

 A process recognition strategy based on Linear Temporal Logic is proposed in (Kreutzmann et al., 2011). However, it is 49 

different from our work in the fact that we combine abductive reasoning with LTL to reason about complex events. An approach 50 

for motion classification using Motion History Image was proposed in (Ahad et. al., 2010) while (Shao et. al, 2012) proposed a 51 

method based on Motion and shape analysis. A probabilistic framework for plan recognition is proposed in (Bui, 2003) which is 52 

based on Abstract Hidden Markov Model. However, our approach is distinct and novel in that it combines LTL and abductive 53 

reasoning to detect and predict complex real-life events like burglary or escapade or distinguishing between temporary and 54 

permanent parking of a car in surveillance videos.  55 

 56 

2. Linear Temporal Logic 57 

Linear Temporal Logic (LTL) is a modal temporal logic with modalities referring to time. It is used to encode the formulae 58 

about future of paths and is used to represent real-world entities in the formal language that helps in instantiating model checking 59 

clauses. It was first proposed in (Pnueli, 1977) as a tool for formal verification of computer programs. The advantage of using 60 

Linear Temporal Logic in modeling surveillance videos lies in the fact that each video frame can be shown to be logically related 61 

to the previous and next frames with relations that can be represented in the temporal domain. The clauses of LTL used in this 62 

paper are:  63 

X �   � holds at the next instant  64 

G �   � holds on the entire subsequent path 65 

F �   � eventually has to hold (somewhere on the subsequent path) 66 

An object’s spatial location is marked by the 2-tuple (x,y) representing the pixel coordinates of its centroid. 67 

3. Mapping surveillance videos to LTL 68 

The first step in our approach is to map the surveillance video frames to Linear Temporal Logic. This requires developing  a 69 

mechanism  to represent the entities and actions in the formal  language of LTL.  70 

3.1 Symbols used to represent the real-world entities 71 

O  {O1, O2, … On} represents the various objects that are considered part of the foreground. 72 

O ∈ {C} U {H} U {A} where C represents the set of cars, H for humans and A for animals. 73 

L  {L1, L2, …, Ln} represents the object locations. 74 



 

 

V  {V1, V2, …, Vn} represents the velocities of the corresponding objects quantified with the help of the optical flows (Lucas 75 

and Kanade, 1981). 76 

3.2 Atomic Propositions 77 

isAt(ti, Oj, Lk)  Object Oj is at location Lk at time instant ti where ti belongs to the finite domain. 78 

isClose(�i, �j)  Entities �i and �j are in close proximity to each other, defined by a threshold τ (close proximity is defined in 79 

terms of the unit in which the entities are defined) which may be Euclidean distance, appearance labels, or just the magnitude. 80 

isLinear(Vi)  Object Oi has a velocity Vi that is linear for a certain period of time within a pre-defined threshold. 81 

Mag(Vi)  Magnitude of the velocity of Object Oi. 82 

3.3     Integrity Constraints  83 

Each frame represents a time instant ti. An object cannot be present simultaneously at two locations in the same frame. This can 84 

be represented mathematically as: 85 

                               isAt(ti, Oj, Lk)  isAt(ti, Oj, Lm) ֜ Lk ֞ Lm                                                                                                                                                                     … ሺ1ሻ 86 

3.4   Complex events represented as a combination of composite atomic propositions  87 

 88 

3.4.1 Occlusion (Event E1) : 89 

Occlusion occurs if at time ti, Object Oj is at location Lk and at the next instant, the object is not visible at any location Lk close to 90 

Lj. 91 

E1 isAt(ti, Oj, Lk)  G ([׊ j]: isClose(Lj, Lk)  ¬ isAt(ti+, Oj, Lj)  ti+ ֜ X ti)                                                            … (2) 92 

 93 

3.4.2 Human entering a vehicle (Event E2): 94 

 95 

A human entering a vehicle is detected at time ti if an Object Oi at location Lk belongs to the set of humans while there exists 96 

another object Oj close to it that belongs to the set of cars, and at the next instant of time, the human is not visible near the 97 

previous location. 98 

 99 

E2  isAt(tp , Oi, Lr)  isAt(tp , Oj, Lk)  (Oi א H)  (Oj א C)  isClose(Lj, Lk)  [׊ m : isClose(Lm, Lr)  ¬ isAt(tp+, Oi, Lm)]  100 

tp+ ֜ X tp                                                                  … (3) 101 

 102 

3.4.3 Burglary or escapade (Event E3): 103 



 

 

Burglary or escapade is a composite event detected when one or more of the aforementioned events occur in the course of time 104 

with other atomic events of interest like carrying an object and velocity of cars and humans exceeding a threshold. 105 

  106 

   E3  Oi א H  (Mag(Vi) > Threshold T1 )  HO detected  E2  X (Oj א C )  F (Mag(Vj) > Threshold T2)                 …(4)107 

         108 

 109 

where,  110 

T1  Threshold for Human velocity 111 

T2  Threshold for car velocity 112 

HO  Human carrying object 113 

4. Abductive Reasoning 114 

Abduction is a logical reasoning framework first proposed in (Pierce, 1901).  In abduction, an explanation a for an 115 

observation b is derived by presuming that a may be true because then b would eventually follow. Thus, to abduce a from b 116 

involves determining that the occurrence of a is sufficient (or nearly sufficient) for the eventual occurrence of b, but not 117 

necessary for b to occur.  118 

Given a theory T  (in LTL) describing normal/abnormal behavior  in an environment and a set of observations O, an abduction 119 

engine computes a set Σ of LTL formulas that form  possible explanations for O and  is consistent with T. A probability 120 

distribution on the set Σ (also called a belief state) is used to determine the most likely explanation.  Technically, E is a minimal 121 

set of LTL formulas that together with T entails O; i.e., T Σ ╞ O.  122 

Here, we assume a Bayesian framework with prior probabilities wherein we first determine the prior probabilities of all 123 

actions Ai that can eventually lead to a particular observation O and choose the Ai with maximum apriori probability.  124 

While the LTL-based framework in Section 3 provides a deterministic plan recognition technique that is not flexible enough to 125 

incorporate probability distributions of the various apriori events,   in most real-world scenarios, the atomic propositions are 126 

associated with probabilities provided either by the sensors or by the tracking/atomic action recognition system. This enables us 127 

to combine  logical abduction with Bayesian inference   to determine the most probable top-level plan.  128 

4.1 Example cases where probabilistic reasoning might help  129 

 130 

4.1.1 Burglary or escapade: 131 

In the example of burglary or escapade in the previous page, in the deterministic case we just consider the velocities of the 132 



 

 

human being entering the car and the velocity of the car henceforth. However, a great determining factor is the location of the 133 

incident. So, once again like the previous example, by matching the label on the ROI (Region of Interest) around the scene 134 

against a database of standard locations, we try to figure out if the point is a bank or jewelry or an antique shop because these 135 

places have a higher probability of witnessing a burglary than other places. 136 

 137 

4.1.2 Filling up tracks under occlusion:  138 

Both humans and cars could be occluded during tracking. For instance, humans could be occluded by a tree or a building. 139 

Similarly, moving cars could also be occluded by a tree or another car. So, we construct a map of the respective objects  based on 140 

their speeds and appearance. The ones having closest speeds and closest in terms of appearance while going into occlusion and 141 

reappearing have highest probabilities of being identified as the same object. 142 

 143 

4.1.3 Filling up tracks on vehicles that might have remained stationary for arbitrary periods of time: 144 

Suppose a car comes to a standstill at a point. We can’t keep tracking it forever. So, matching the label on the ROI around the 145 

car against a database of standard locations, we try to figure out if the point is a traffic signal or a parking lot. There’s a high 146 

probability of a car waiting temporarily at a signal or permanently stopping at a parking lot. 147 

 148 

4.2   Probabilistic reasoning to perform abduction 149 

The use of conditional probabilities to perform probabilistic Horn abduction was proposed in (Poole, 1993). Probabilistic Horn 150 

Abduction is a framework for integrating probabilistic and logical reasoning into a coherent practical framework. We use this 151 

same idea in our paper but use an altogether different approach by performing probabilistic reasoning on the Linear Temporal 152 

Logic formulas defined in Section 3. 153 

 154 

Case 1: Burglary or escapade 155 

Let us denote a bank by the label B and an antique shop or Jewelry shop by AS. So, the probability that the event E is a burglary 156 

or escapade is given by 157 

P(E=Burglary/Escapade) = P(F (isAt(ti, Li, B)  isAt(ti, Li, AS)))  P(E3)                                                                 …  (5) 158 

Here, P(F (isAt(ti, Li, B))) = dist(Li- PL)  and P(F (isAt(ti, Li, AS))) = dist(Li- AS) 159 

Also, E3 denotes the deterministic event presented earlier in equation 4 and F denotes the eventually clause in LTL. 160 

A careful investigation into the above equation yields the unknowns P(Mag(Vi) > Threshold T1 ) and P(HO detected) that are yet 161 

to be defined. 162 



 

 

We define them as follows: 163 

P(Mag(Vi) > Threshold T1 ) = 1, when Mag(Vi) > Threshold T1 164 

            = 0, otherwise. 165 

And, P(HO detected) is obtained from the template matching algorithm that yields both the appearance labels discussed before as 166 

well as the human carrying object. 167 

 168 

Case 2: Filling up tracks under occlusion  169 

Suppose at the instant an object Oi is last seen before being occluded, it has velocity ui and appearance label a1i. For each object 170 

that has a velocity u א U and appearance label a1 א A1, after coming out from occlusion has a velocity v א V and corresponding 171 

appearance label a2 א A2. Also let us define the track join operator as ∆.  172 

So, Ti ∆ Tj  joining tracks Ti and Tj. Hence,  173 

P(Ti ∆ Tj) = (P(F (isClose(ui, vj))))  (P(F (isClose(a1i, a2j)))) [׊ i,j: ui א U and vj א V and a1i א A1 and a2j א A2]                   174 

… (6) 175 

Here,  P(F (isClose(ui, vj))) =    min (|ui-vj|)/ (|ui-vj|)    176 

                              177 

And,   P(F (isClose(a1i, a2j))) =  min (|a1i-a2j|)/ (|a1i-a2j|)   [׊ i,j: ui א U and vj א V and a1i א A1 and a2j א A2]                                              178 

The above equation uses normalization to ensure that the probability always remains less than or equal to 1 as well as the fact 179 

that closer the velocities of each object higher the probability of track joining. The operator F denotes the eventual modality 180 

defined in LTL. 181 

 182 

Case 3: Filling up tracks on vehicles that might have remained stationary for arbitrary periods of time 183 

As illustrated earlier, a location is marked as Li. Also, let us denote a parking lot by the label PL and a traffic signal or level-184 

crossing as S. Also, let us denote the wait time for keeping the tracks active on a stationary vehicle as δt. So, for a parking lot,   185 

                                                                     P(δt = ttemp ) = P(F (isClose(Vi, 0) Λ isAt(ti, Li, PL)))                                         … (7) 186 

And for traffic signal, 187 

                                      P(δt = tperm ) = P(F (isClose(Vi, 0) Λ isAt(ti ,Li, S)))                                        …   (8) 188 

 189 

Where, P(F (isClose(Vi, 0)))= 1/ Vi and P(F (isAt(ti, Li, PL))) = 1/dist(Li- PL), provided Vi and dist(Li- PL)doesn’t fall beneath 190 

1 and dist(Li- PL) denotes the distance between Li and PL. So as Li approaches PL the probability measure keeps increasing. 191 



 

 

Also, ttemp and tperm denote the user-defined constants representing the temporary and permanent waiting times for a vehicle and F 192 

denotes the eventual modality in LTL. 193 

 194 

5. Chaining the events by mapping them into a Bayesian Framework 195 

A Bayesian network (also known as a belief network or probabilistic causal network) captures believed relations (which may 196 

be uncertain, stochastic, or imprecise) between a set of variables, which are relevant to some problem.  They might be relevant 197 

because they will be observable, because their value is needed to take some action or report some result, or because they are 198 

intermediate or internal variables that help express the relationships between the rest of the variables.  199 

Each node in a Bayesian Network represents a scalar variable which may be discrete, continuous or propositional. Once the 200 

nodes are abstructed out, they are connected together by directed links. Each node has an associated probability vector with it. 201 

The number of elements in this vector depends upon the number of nodes that the current node depends on. So, if the current 202 

node is dependent upon say one node then, the vector has four elements – representing the cases where the previous node and the 203 

current node are true-true, true-false, false-true and false-false respectively. Similarly, a node dependent on two previous nodes 204 

may be shown to have a probability vector of length eight.  An example Bayes net from our implementation has been pictured in 205 

Fig 1. Each node has a probability vector associated with it.   206 

For instance, Probability that velocity of human is greater than threshold is given by the vector   207 

[(1-δ) (τhuman-Vmin_human)/(Vmax_human-Vmin_human) δ (Vmax_human-τhuman)/(Vmax_human-Vmin_human)]. Here, δ is a pre-208 

defined constant that determines the hardness of assumption. Hence, a value of 0.2 for δ means that even if an event E1 is false, 209 

another event E2 that depends upon it has a probability of  20 percent of  being true and hence has a chance of 80 percent of 210 

being false. Hence each element of the probability vector of E2 that depends upon E1 is the conditional probability of E2 with 211 

respect to E1. The probability vectors are determined by an expert and later updated based on incoming data.  212 

 213 

  214 



 

 

 215 

Fig 1.  The Inference Engine for Burglary detection 216 

 217 

6. Implementation 218 

The action recognition module proposed in this paper uses our tracking1and motion classification modules2. The plan recognition 219 

module produces significantly accurate results distinguishing between car stops at an intersection and a parking lot. It is also able 220 

to track a car again after an occlusion by linking the tracks using appearance and velocity labels through our inference engine.   221 

Our module can also distinguish a normal visit to a store from that of a burglary/escapade. 222 

Fig 2, 3 and 4 portray cases of burglary detection in videos obtained from surveillance cameras. Fig 5 and 6 demonstrate the 223 

effectiveness of our approach in the case of occlusion for human and car respectively. Fig 7 shows a temporary car stop at an 224 

intersection while Fig 8 shows a permanent stop at a parking lot. The videos used for the experiments were obtained from public 225 

datasets like VIRAT and Youtube. 226 

 227 

  228 

 
1 https://xythos.lsu.edu/users/mstagg3/web/tracker. 
2 Provided along with the supplementary materials 



 

 

Burglary 229 

 230 

 231 

 232 

Fig 2. Vcar > Threshold and Vhuman > Threshold and Human carrying object detected and Li in front of store and Human entering 233 

and exiting building detected, so, probable burglary detected. 234 

 235 
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 238 

Fig 3. Human velocity greater than threshold and Human carrying object detected inside store, so, probable burglary alert 239 

 240 

 241 



 

 

Fig 4. Vcar > Threshold and Vhuman > Threshold and Human exiting building and escaping on a car was detected, so, probable 242 

burglary detected. 243 

 244 

    245 
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Occlusion 247 

 248 

 249 

Fig 5. Tracking a human (on the side walk) through occlusion by matching appearance and velocity labels 250 

 251 



 

 

 252 

Fig 6. Velocities and appearance labels are roughly similar for the same car that proves greater likelihood of track merging after 253 

occlusion.   254 

 255 

  256 



 

 

Intersection 257 

 258 

 259 

Fig 7. Cars at an intersection. Waiting time for tracker δt = ttemp 260 

 261 
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Parking Lot 263 

 264 



 

 

 265 

 266 

Fig 8. A car at a parking lot. Waiting time for tracker δt = tperm 267 

 268 

 269 

 270 

 271 

7. Conclusions 272 

Our approach to high level action recognition using LTL based abductive reasoning provides a novel approach in identifying 273 

complex events like burglary or escapade in surveillance videos. The use of Linear Temporal Logic ensures in accounting for the 274 

temporal modalities between the successive frames, whereas, abductive reasoning through the integration of probabilistic and 275 

logical reasoning frameworks as proposed in (Poole, 1993) proves to be a useful tool in reasoning about the various complex 276 

real-life events that are otherwise impossible to detect in existing automated implementations.  277 

Currently we are working on integrating the ideas proposed in this paper to develop an ensemble learning framework that can 278 

automatically detect the top-level plans associated with a wide-range of suspicious activities in surveillance videos.  279 

 280 
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